Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew D. Burrows, Ross W. Harrington*‡ and Mary F. Mahon

Department of Chemistry, University of Bath, Claverton Down, Bath BA1 7AY, England

‡ Current address: School of Natural Sciences, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England.

Correspondence e-mail: r.w.harrington@ncl.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{N-C}) = 0.003 \text{ Å}$ R factor = 0.028 wR factor = 0.067 Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Determination of the crystal structure of the title compound, $[ZnCl_2(C_3H_6N_2S)_2]$, reveals a distorted tetrahedral geometry around the zinc centre which occupies a twofold axis. Both intra- and intermolecular hydrogen bonding is observed between the 1,3-dimethylthiourea NH groups and the coordinated Cl atoms.

Dichlorobis(1,3-dimethylthiourea-*kS*)zinc(II)

Received 15 July 2004 Accepted 18 August 2004 Online 28 August 2004

Comment

The title compound, (I), was formed as part of our investigations into the formation of bis-thiourea zinc(II) dicarboxylate polymers (Burrows *et al.*, 2000, 2004; Burke *et al.*, 2003).

The asymmetric unit of (I) (Fig. 1) consists of a zinc(II) centre occupying a twofold symmetry axis, to which is coordinated one 1,3-dimethylthiourea ligand, *via* the S atom, and one Cl^- . The complete molecule is generated by transformation through a twofold rotation axis, inherent in the space group. The geometry around the Zn centre is distorted tetrahedral, with bond angles ranging from 104.35 (3) to

Figure 1

A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms represented by small spheres. [Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.]

 $113.300 (19)^{\circ}$. This study confirms previous conclusions on the structure of (I) which emerged on the basis of IR studies (Marcotrigiano, 1975).

The NH groups of the 1,3-dimethylthiourea ligands are arranged such that they facilitate the formation of both intraand intermolecular hydrogen bonds, involving Cl⁻ anions as acceptors in both cases; details are given in Table 1. As seen in a number of zinc(II) bis(thiourea) dicarboxylate polymers (Burrows et al., 2000), the intramolecular hydrogen bonds have graph-set notation S(6). The intermolecular hydrogen bonds link the molecules into infinite hydrogen-bonded chains (Fig. 2). These interactions occur pairwise and lead to hydrogen-bonded rings with graph-set notation $R_2^2(12)$. There is no inter-chain hydrogen bonding present.

Experimental

Equimolar aqueous solutions of zinc(II) tetra(1,3-dimethylthiourea) dichloride (Ashcroft, 1970) and sodium salts of succinic, itaconic or mesaconic acids were allowed to evaporate slowly over a period of two weeks, in each case resulting in the formation of colourless crystals. Analysis by single-crystal X-ray diffraction revealed the identity of the products as (I) and confirmed that the dicarboxylate was not incorporated into the structure.

Crystal data

$[ZnCl_2(C_3H_6N_2S)_2]$	$D_x = 1.652 \text{ Mg m}^{-3}$
$M_r = 344.62$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 1063
a = 13.0230 (4) Å	reflections
b = 8.9470(3) Å	$\theta = 0.2-26.3^{\circ}$
c = 12.4350(3) Å	$\mu = 2.44 \text{ mm}^{-1}$
$\beta = 106.967 \ (2)^{\circ}$	T = 150 (2) K
V = 1385.82 (7) Å ³	Block, colourless
Z = 4	$0.18 \times 0.15 \times 0.15 \ \text{mm}$
Data collection	
Nonius KappaCCD area-detector diffractometer	1580 independent reflection 1439 reflections with $I > 2\sigma$

 φ and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.655, T_{\max} = 0.697$ 8273 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ wR(F²) = 0.067 S = 1.141580 reflections 85 parameters H atoms treated by a mixture of

independent and constrained refinement

(I) $R_{\rm int} = 0.034$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -11 \rightarrow 11$ $l = -16 \rightarrow 16$

 $w = 1/[\sigma^2(F_o^2) + (0.0178P)^2]$ + 2.1477P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Figure 2

A view of the intermolecular hydrogen-bond interactions in (I), leading to chains along the crystallographic [101] direction.

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2···Cl1	0.884 (17)	2.337 (18)	3.2110 (19)	170 (3)
$N1 - H1 \cdots Cl1^i$	0.887 (17)	2.47 (2)	3.2737 (19)	152 (2)

Symmetry code: (i) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$.

H atoms were included at calculated positions on all carbon centres, being constrained to an ideal geometry with C-H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Each group was allowed to rotate freely about its C-N bond. The position of the amino H atoms were located from the difference map and refined isotropically subject to a distance constraint of 0.89 Å.

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL and local programs.

The EPSRC is thanked for funding.

References

- Ashcroft, S. J. (1970). J. Chem. Soc. A, pp. 1020-1024.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Bruker (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burke, N. J., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Dalton Trans. pp. 3840-3849.
- Burrows, A. D., Donovan, A. S., Harrington, R. W. & Mahon, M. F. (2004). Eur. J. Inorg. Chem. Accepted.
- Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). J. Chem. Soc. Dalton Trans. pp. 3845-3854.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Marcotrigiano, G. (1975). Z. Anorg. Allg. Chem. 417, 75-80.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.